Вып. 46 Межвузовский сборник научных трудов

2014

УДК 531.9

Н.Н. Макеев

Институт проблем точной механики и управления РАН

Россия, 410028, Саратов, ул. Рабочая, 24 nmakeyev@mail.ru; (845) 272-35-33

УСТОЙЧИВОСТЬ СТАЦИОНАРНЫХ ДВИЖЕНИЙ ТВЁРДОГО ТЕЛА, ДВИЖУЩЕГОСЯ ПОД ДЕЙСТВИЕМ ГИРОСКОПИЧЕСКИХ СИЛ В ПРОСТРАНСТВЕ ЛОБАЧЕВСКОГО

Рассматривается движение твёрдого тела в пространстве постоянной отрицательной кривизны (пространстве Лобачевского) при воздействии гироскопических сил. Получены необходимое и достаточное условия устойчивости по компонентам винта скорости стационарных движений тела, происходящих при постоянном винте внешних сил.

Ключевые слова: устойчивость; твёрдое тело; гироскопические силы; пространство Лобачевского.

1. Предварительные положения

Согласно проективной модели Φ . Клейна пространство Лобачевского L_3 реализуется внутри абсолюта гиперболического пространства Γ_3 с уравнением

$$g_{ij}x^{i}x^{j} \equiv -(x^{1})^{2} - (x^{2})^{2} - (x^{3})^{2} + (x^{4})^{2} = 0,$$
 (1)

где g_{ij} — метрический тензор. Задание этого тензора в общей теории относительности характеризует структуру данного пространства с вложенным в него стационарным силовым полем.

-

[©] Макеев Н. Н., 2014

Под движением (в геометрическом смысле) пространства Γ_3 понимается проективное невырожденное линейное преобразование, переводящее в себя абсолют (1). Так как между одночленными группами движений в пространстве Γ_3 и специальными линейными комплексами в пространстве P_3 существует взачимно однозначное соответствие, то движение в пространстве Γ_3 , как и в пространстве L_3 , задается бивектором псевдоевклидова пространства R_4^1 .

Винт (кинематический и динамический) в пространстве L_3 определяется непростым бивектором, заданным плюккеровыми координатами внешней и внутренней оси винта.

Рассмотрим свободное от связей абсолютно твёрдое тело, движущееся в пространстве L_3 . Пусть $P^0\!\left(e_1^0\dots e_4^0\right)$ – опорный координатный тетраэдр, автополярный относительно абсолюта (1), и неизменно связанный с инерциальным пространством L_3 . Этот тетраэдр задаётся точками e_j^0 ($j=1,\dots,4$) данного пространства. С твердым телом неизменно свяжем координатный тетраэдр инерции $P\!\left(e_1\dots e_4\right)$, также автополярный относительно абсолюта (1) [1], так, чтобы его вершина e_4 была собственной, совпадала с центром инерции твердого тела, и чтобы ориентация данных тетраэдров совпадала [1]. Взаимное расположение тетраэдров P^0 , P в пространстве конфигураций может быть однозначно задано параметрами положения и ориентации [2].

Обозначим компоненты сдвига тела вдоль его главных осей инерции e_4e_1, e_4e_2, e_4e_3 через v^{14}, v^{24}, v^{34} , а компоненты вращения вокруг этих осей – через $\omega^{14}, \omega^{24}, \omega^{34}$, соответственно. Пусть A_{23} , A_{31}, A_{12} – моменты инерции сдвига вдоль данных осей, а A_{14}, A_{24}, A_{34} – моменты инерции вращения вокруг этих осей. Определение моментов инерции сдвига и вращения твёрдого тела в пространстве L_3 дано в работе [1].

Для моментов инерции сдвига и вращения твёрдого тела имеют место тождественные соотношения связи [1]

$$A_{23} - A_{14} = A_{31} - A_{24} = A_{12} - A_{34} = k^2 M, (2)$$

где k — радиус кривизны пространства L_3 , M — величина массы твердого тела.

Уравнения движения твёрдого тела, происходящего под воздействием силового винта внешних сил L^{ij} в пространстве L_3 , имеют вид [1]

$$A_{23} v^{14} + (A_{31} + A_{34})(v^{34}\omega^{24} - v^{24}\omega^{34}) = k^2 L^{14},$$

$$A_{14} \omega^{14} + (A_{12} - A_{31})(\omega^{24}\omega^{34} + v^{24}v^{34}) = -k^2 L^{23}$$
(1, 2, 3).

В системе уравнений (3) каждая их двух групп уравнений задана приведённым уравнением-представителем. Остальные уравнения каждой группы следуют из данных при циклической перестановке индексов 1, 2, 3 в данных величинах.

Зададим компоненты силового винта для уравнений ДС (3) относительно автополярного тетраэдра P в виде

$$k^{2}L^{14} = \lambda^{34}v^{24} - \lambda^{24}v^{34} + \lambda^{31}\omega^{34} - \lambda^{12}\omega^{24} + k^{2}m^{14},$$

$$-k^{2}L^{23} = \lambda^{31}v^{34} - \lambda^{12}v^{24} + \lambda^{24}\omega^{34} - \lambda^{34}\omega^{24} - k^{2}m^{23}$$
(4)
(1, 2, 3).

В системе (4) числа λ^{rs} , m^{rs} $(r=1,2,3;\ s=1,...,4;\ r\neq s)$ — заданные постоянные коэффициенты и параметры винта внешних сил, соответственно.

Поскольку мощность силового винта, заданного выражениями (4), при всех значениях $m^{rs}=0$ тождественно равна нулю, то силы, определяемые этим винтом при данных условиях, являются *гироскопическими* (по Томсону и Тэту) [3, с. 222]. Кроме того, критерием гироскопичности системы обобщенных сил, линейно зависящих от обобщенных скоростей, является кососимметричность матрицы коэффициентов её аналитического представления [4, с. 394], что и выполняется в данном случае.

В силу соотношений (4) система динамических уравнений (3) в осях тетраэдра P принимает вид [5]

$$A_{23} v^{14} + (A_{31} + A_{34})(v^{34}\omega^{24} - v^{24}\omega^{34}) +$$

$$+ \lambda^{24}v^{34} - \lambda^{34}v^{24} + \lambda^{12}\omega^{24} - \lambda^{31}\omega^{34} = k^{2}m^{14},$$

$$A_{14} \omega^{14} + (A_{12} - A_{31})(\omega^{24}\omega^{34} + v^{24}v^{34}) +$$

$$+ \lambda^{12}v^{24} - \lambda^{31}v^{34} + \lambda^{34}\omega^{24} - \lambda^{24}\omega^{34} = -k^{2}m^{23}$$

$$(1, 2, 3).$$

$$(5)$$

Система уравнений (5), представленная двумя группами уравнений, является многопараметрической системой, аналитически замкнутой относительно компонент v^{i4} , ω^{i4} (i=1,2,3), если параметры m^{rs} не зависят от других переменных. Эта система при значениях всех силовых параметров $m^{rs}=0$ обладает первыми алгебраическими интегралами [5]

$$V_{1} \equiv \sum_{(123)} \left[\left(A_{12} v^{34} + \lambda^{12} \right)^{2} - \left(A_{14} \omega^{14} + \lambda^{14} \right)^{2} \right] = h_{1},$$

$$V_{2} \equiv \sum_{(123)} \left(A_{12} v^{34} + \lambda^{12} \right) \left(A_{34} \omega^{34} + \lambda^{34} \right) = h_{2},$$

$$V_{3} \equiv \sum_{(123)} \left[A_{12} \left(v^{34} \right)^{2} + A_{14} \left(\omega^{14} \right)^{2} \right] = h_{3}^{2}.$$
(6)

В равенствах (6) h_j — постоянные интегрирования; символ (1 2 3) под знаком суммы обозначает суммирование по величинам, получаемым циклической перестановкой данных числовых индексов в указанных величинах. Соотношения V_1, V_2 являются интегралами кинетического винта (V_1 — интеграл модуля кинетического винта, V_2 — аналог интеграла Э. Нетер), а V_3 — интегралом энергии. Интеграл V_1 является функцией бивектора и поляризованного бивектора кинетического винта; интеграл V_2 — функцией бивектора. Величина V_3 сохраняется в силу свойства гироскопичности внешних сил, действующих на твёрдое тело.

2. Постановка задачи

Из многообразия возможных движений, определяемых уравнениями (5), выделим класс движений, для которого выполняются условия

$$m^{rs} = const \quad (r = 1, 2, 3; s = 1, ..., 4; r \neq s)$$
 (7)

относительно осей связанного тетраэдра и не зависят от текущего положения и ориентации твёрдого тела.

Под стационарными движениями тела в пространстве L_3 понимается класс движений, удовлетворяющих системе условий

$$v^{i4} = const = v_0^{i4}, \quad \omega^{i4} = const = \omega_0^{i4}, \quad (i = 1, 2, 3).$$
 (8)

Ограничения (8) определяют классы *равномерных сдвигов* тела вдоль его осей инерции и *равномерных вращений* вокруг этих осей с данными скоростями, соответственно.

Ставится следующая задача: для некоторых видов стационарных движений, удовлетворяющих уравнениям (5) и условиям (7), (8), найти необходимое и достаточное условия устойчивости по А.М.Ляпунову.

3. Необходимые условия устойчивости

Пусть выполняются условия (7). Тогда система уравнений (5) при некоторых значениях параметров m^{rs} допускает однопараметрические множества стационарных решений, определяющих соответствующие стационарные движения тела. Представителями этих множеств при условиях

$$(\lambda^{12}, \lambda^{24}, \lambda^{31}, \lambda^{34}) \neq 0, \quad m^{14} = m^{23} = 0$$
 (9)

являются две следующие группы решений.

Группа 1

$$\omega^{14} = \omega_0^{14} = \omega_0$$
, $\omega^{r4} = v^{i4} = 0$ $(r = 2, 3; i = 1, 2, 3)$, (10)

для которой имеют место ограничения

$$k^{-2}\omega_0 = m^{31}(\lambda^{34})^{-1} = -m^{24}(\lambda^{12})^{-1} = m^{34}(\lambda^{31})^{-1} = -m^{12}(\lambda^{24})^{-1}.$$

Группе решений (10) соответствует равномерное вращение твёрдого тела вокруг его оси инерции со скоростью ω_0 .

Группа 2

$$v^{14} = v_0^{14} = v_0$$
, $v^{r4} = \omega^{i4} = 0$ $(r = 2, 3; i = 1, 2, 3)$, (11)

имеющая место при ограничениях

$$k^{-2}v_0 = m^{31}(\lambda^{12})^{-1} = -m^{34}(\lambda^{24})^{-1} = -m^{12}(\lambda^{31})^{-1} = m^{24}(\lambda^{34})^{-1}.$$

Группа решений (11) определяет равномерный сдвиг твёрдого тела по его оси инерции, происходящий со скоростью v_0 . Сложное движение тела, составленное из совместимых движений (10), (11), является его равномерным винтовым движением, происходящим с данными скоростями.

Исследуем устойчивость по первому приближению *движений группы* 1, происходящих при условиях (9), принимая состояние тела (10) за невозмущённое. В возмущённом движении положим

$$\omega^{14} = \omega_0 + \omega_1, \quad \omega^{r4} = \omega_r \quad (r = 2, 3),$$

$$v^{i4} = v_i \quad (i = 1, 2, 3).$$

Построим для уравнений основной динамической системы (5) в силу приведённых возмущений соответствующую систему уравнений первого приближения. На основе этой системы стандартным образом составим характеристическое уравнение системы в возмущениях (вариациях) в виде (здесь, естественно, полагается $\omega_0 \neq 0$ и для λ^{rs} должны выполняться условия (9))

ется
$$\omega_0 \neq 0$$
 и для λ^{rs} должны выполняться условия (9))
$$\begin{vmatrix} A_{14} \mu & \lambda^{34} & -\lambda^{24} & 0 & \lambda^{12} & -\lambda^{31} \\ -\lambda^{34} & A_{24} \mu & P_1 & -\lambda^{12} & 0 & \lambda^{23} \\ \lambda^{24} & P_2 & A_{34} \mu & \lambda^{31} & -\lambda^{23} & 0 \\ 0 & \lambda^{12} & -\lambda^{31} & A_{23} \mu & -\lambda^{34} & \lambda^{24} \\ -\lambda^{12} & 0 & \lambda^{23} & \lambda^{34} & A_{31} \mu & P_3 \\ \lambda^{31} & -\lambda^{23} & 0 & -\lambda^{24} & P_4 & A_{12} \mu \end{vmatrix} = 0, \quad (12)$$

где обозначено

$$P_s = n_s \omega_0$$
, $n_1 = A_{23} - A_{12} + I_1$, $n_2 = A_{31} - A_{23} - I_1$,
 $n_3 = -(A_{12} + A_{14} + I_1)$, $n_4 = A_{23} + A_{24} + I_1$, $I_1 = \lambda^{14} \omega_0^{-1}$
 $(s = 1, ..., 4)$.

Представим уравнение (12) в развёрнутом виде

$$\sum_{k=0}^{6} a_k \, \mu^k = 0, \tag{13}$$

где обозначено

$$a_{3} = A_{12} A_{31} (A_{14} \lambda^{12} \lambda^{31} + A_{23} \lambda^{24} \lambda^{34}) (P_{1} + P_{2}) + A_{24} A_{34} (A_{14} \lambda^{24} \lambda^{34} + A_{23} \lambda^{12} \lambda^{31}) (P_{3} + P_{4}),$$

$$a_{5} = 0, \quad a_{6} = A_{12} A_{14} A_{23} A_{24} A_{31} A_{34}.$$

Выражения для остальных коэффициентов уравнения (13) здесь несущественны.

Из уравнения (13) следует, что равномерное вращение тела, определяемое условиями (10), в некритических случаях не является асимптотически устойчивым, поскольку одно из детерминантных неравенств Льенара—Шипара [6] нарушается и принимает вид

$$\Delta_3 = -a_6 a_3^2 < 0,$$

где Δ_3 — определитель Гурвица.

Рассмотрим движение (10) при условии $\lambda^{14}\lambda^{23} \neq 0$, когда при всех остальных значениях r,s имеем $\lambda^{rs}=0$. В этом случае

$$a_0 = a_1 = a_3 = 0$$
,

$$a_2 = A_{14} A_{23} [(\lambda^{23})^4 - (P_1 P_3 + P_2 P_4)(\lambda^{23})^2 + P_1 P_2 P_3 P_4],$$

$$a_4 = A_{14} A_{23} [(A_{12} A_{24} + A_{31} A_{34})(\lambda^{23})^2 - (A_{12} A_{31} P_1 P_2 + A_{24} A_{34} P_3 P_4)].$$

Нулевые корни уравнения (13) в этом случае указывают на то, что начальное возмущение кинетического винта твёрдого тела сохраняется постоянным. Поскольку данный случай является критическим, то условие устойчивости данного движения представим в форме $Re \ \mu = 0$ [7]. Это условие в силу наличия нулевых корней уравнения (13) приведёт к *необходимому*, но не достаточному *условию устойчивости*, выраженному системой

$$a_4^2 - 4a_2a_6 > 0, \quad a_2 \ge 0, \quad a_4 \ge 0.$$
 (14)

Первое неравенство системы (14) принимает вид

$$(A_{12}A_{24} - A_{31}A_{34})^{2}(\lambda^{23})^{4} + 2[2A_{12}A_{24}A_{31}A_{34}(P_{1}P_{3} + P_{2}P_{4}) - (A_{12}A_{24} + A_{31}A_{34})(A_{12}A_{31}P_{1}P_{2} + A_{24}A_{34}P_{3}P_{4})](\lambda^{23})^{2} + (A_{12}A_{31}P_{1}P_{2} - A_{24}A_{34}P_{3}P_{4})^{2} > 0,$$

$$(15)$$

а остальные приводятся к соотношениям

$$a_{11}\omega_0^2 + a_{12}\omega_0 + a_{13} \ge 0,$$
 (16)

$$a_{21}\omega_0^4 + a_{22}\omega_0^3 + a_{23}\omega_0^2 + a_{24}\omega_0 + a_{25}^2 \ge 0.$$
 (17)

Введём обозначения:

$$C_1 = A_{23} - A_{12}, \quad C_2 = A_{23} - A_{31},$$

 $D_1 = A_{12} + A_{14}, \quad D_2 = A_{23} + A_{24},$
 $D_3 = A_{23} + A_{34}, \quad D_4 = A_{14} + A_{23}.$

В данных обозначениях коэффициенты соотношений (16), (17) представляются в виде

$$a_{11} = A_{12} A_{31} C_1 C_2 + A_{24} A_{34} D_1 D_2,$$

$$a_{12} = [A_{12} A_{31} (C_1 + C_2) + A_{24} A_{34} (D_2 + D_3)] \lambda^{14},$$

$$a_{13} = (A_{12} A_{31} + A_{24} A_{34}) (\lambda^{14})^2 + (A_{12} A_{24} + A_{31} A_{34}) (\lambda^{23})^2,$$

$$a_{21} = C_1 C_2 D_1 D_2, \quad a_{24} = 2D_4 a_{25} \lambda^{14}, \quad a_{25} = (\lambda^{14})^2 + (\lambda^{23})^2,$$

$$a_{22} = [C_1 C_2 (D_2 + D_3) + D_1 D_2 (C_1 + C_2)] \lambda^{14},$$

$$a_{23} = (C_1 D_1 + C_2 D_2) (\lambda^{23})^2 + [C_1 C_2 + D_1 D_2 + (C_1 + C_2) (D_2 + D_3)] (\lambda^{14})^2.$$

Таким образом, соотношения (15)—(17) выражают *необхо- димое условие устойчивости* движений группы 1, определяемых условиями (10) и соответствующими им ограничениями.

Исследуем устойчивость по первому приближению *движений группы* 2, происходящих при условиях (9), принимая состояние тела (11) за невозмущённое. В возмущённом движении положим

$$v^{14} = v_0 + v_1, \quad v^{r4} = v_r \quad (r = 2, 3),$$

 $\omega^{i4} = \omega_i \quad (i = 1, 2, 3).$

Построив для данного движения систему уравнений первого приближения, составим её характеристическое уравнение

$$\begin{vmatrix} A_{14} \mu & \lambda^{34} & -\lambda^{24} & -\lambda^{31} & 0 & \lambda^{12} \\ -\lambda^{34} & A_{24} \mu & \lambda^{14} & Q_{1} & -\lambda^{12} & 0 \\ \lambda^{24} & -\lambda^{14} & A_{34} \mu & 0 & \lambda^{31} & Q_{2} \\ \lambda^{31} & Q_{3} & 0 & A_{12} \mu & -\lambda^{24} & \lambda^{14} \\ 0 & \lambda^{12} & -\lambda^{31} & \lambda^{24} & A_{23} \mu & -\lambda^{34} \\ -\lambda^{12} & 0 & Q_{4} & -\lambda^{14} & \lambda^{34} & A_{31} \mu \end{vmatrix} = 0, \quad (18)$$

$$Q_s = \ell_s v_0, \quad \ell_1 = C_1 + I_2, \quad \ell_2 = -(C_2 + I_2), \quad \ell_3 = -(D_2 + I_2),$$

$$\ell_4 = D_1 + I_2, \quad I_2 = \lambda^{23} v_0^{-1} \quad (s = 1, ..., 4).$$

Аналогично предыдущему можно показать, что в силу уравнения (18) движение (11), являющееся равномерным сдвигом тела по оси инерции, в некритических случаях не является асимптотически устойчивым.

Рассмотрим движение (11) при условии $\lambda^{14} \lambda^{23} \neq 0$, когда при всех остальных значениях r, s имеем $\lambda^{rs} = 0$. В этом случае уравнение (18) приводится к виду

$$\mu^{2} (a_{6} \mu^{4} + b_{4} \mu^{2} + b_{2}) = 0, \tag{19}$$

где обозначено

$$b_{2} = A_{14} A_{23} [(\lambda^{14})^{4} + (Q_{1} Q_{4} + Q_{2} Q_{3})(\lambda^{14})^{2} + Q_{1} Q_{2} Q_{3} Q_{4}],$$

$$b_{4} = A_{14} A_{23} [(A_{12} A_{31} + A_{24} A_{34})(\lambda^{14})^{2} - (A_{12} A_{24} Q_{2} Q_{4} + A_{31} A_{34} Q_{1} Q_{3})].$$

В силу уравнения (19) соотношения, являющиеся аналогами условий (15)–(17) для данного движения, имеют вид

$$(A_{12} A_{31} - A_{24} A_{34})^{2} (\lambda^{14})^{4} - 2[2 A_{12} A_{24} A_{31} A_{34} (Q_{1} Q_{4} + Q_{2} Q_{3}) + (A_{12} A_{31} + A_{24} A_{34}) (A_{31} A_{34} Q_{1} Q_{3} + Q_{2} Q_{4})](\lambda^{14})^{2} + (A_{31} A_{34} Q_{1} Q_{3} - A_{12} A_{24} Q_{2} Q_{4})^{2} > 0,$$

$$(21)$$

 $b_{21}v_0^4 + b_{22}v_0^3 + b_{22}v_0^2 + b_{24}v_0 + b_{25}^2 \ge 0$.

В соотношениях (21) обозначено

$$\begin{aligned} b_{11} &= A_{12} A_{24} C_2 D_1 + A_{31} A_{34} C_1 D_2, \\ b_{12} &= \left[A_{12} A_{24} \left(C_2 + D_3 \right) + A_{31} A_{34} \left(C_1 + D_2 \right) \right] \lambda^{23}, \\ b_{13} &= a_{13}, \quad b_{21} = a_{21}, \quad b_{24} = 2 D_4 a_{25} \lambda^{23}, \quad b_{25} = a_{25}, \\ b_{22} &= \left[C_1 D_1 \left(C_2 + D_2 \right) + C_2 D_2 D_4 \right] \lambda^{23}, \\ b_{23} &= \left(C_1 D_1 + C_2 D_2 \right) (\lambda^{14})^2 + \left[C_1 D_1 + C_2 D_2 + D_4 \left(C_2 + D_2 \right) \right] (\lambda^{23})^2. \end{aligned}$$

Таким образом, соотношения (20), (21) выражают *необхо-* димое условие устойчивости движений группы 2, определяемых условиями (11) и соответствующими им ограничениями.

В случае, при котором $A_{12}=A_{23}=A_{31}$, имеем $a_{21}=a_{22}=0$ и неравенство (17) становится квадратичным относительно ω_0 . В этом же случае $b_{11}=b_{22}=0$ и первое неравенство (21) становится линейным относительно ν_0 ; при этом всегда $b_{13}>0$.

4. Достаточные условия устойчивости

Рассмотрим достаточное условие устойчивости *движений* группы 1, происходящих при условиях (9), принимая состояние (10) за невозмущённое. В данных движениях положим $\lambda^{14} \neq 0$, а все остальные параметры $\lambda^{rs} = 0$.

Система уравнений возмущённого движения имеет первые интегралы

$$W_{1} = \left\langle (A_{12}v_{3})^{2} - (A_{14}\omega_{1})^{2} \right\rangle - 2A_{14}(A_{14}\omega_{0} + \lambda^{14})\omega_{1} = const,$$

$$W_{2} = \left\langle A_{12}v_{3}^{2} + A_{14}\omega_{1}^{2} \right\rangle + 2A_{14}\omega_{0}\omega_{1} = const.$$
(22)

Здесь и всюду далее символ $\langle ... \rangle$ имеет тот же смысл, что и символ (1 2 3) в равенствах (6).

Составим связку интегралов (22) по Лагранжу

$$W = W_1 + JW_2 + (2\omega_0)^{-2} \lambda W_2^2 =$$

$$= \langle A_{23} (A_{23} + J) v_1^2 - A_{14} (A_{14} - J) \omega_1^2 \rangle + \lambda (A_{14} \omega_1)^2,$$
(23)

где $J = A_{_{14}} + I_{_{1}}, \; \lambda \; -$ постоянный множитель Лагранжа.

Согласно выражению (23) в силу теоремы Ляпунова об устойчивости данное невозмущённое движение устойчиво при совместном выполнении условий

$$I_1 > A_{34} - A_{14}, \qquad I_1 > A_{24} - A_{14}$$
 (24)

или условий

$$I_1 < A_{34} - A_{14}, I_1 < A_{24} - A_{14}. (25)$$

Условия (24), (25), согласно тождественным соотношениям связи (2), эквивалентны следующим, соответственно

$$I_1 > A_{12} - A_{23}, I_1 > A_{31} - A_{23}, (26)$$

$$I_1 < A_{12} - A_{23}, I_1 < A_{31} - A_{23}.$$
 (27)

Ограничения (24)–(27) сохраняются и для случая, при котором $I_1 = 0$ ($\lambda^{14} = 0$), гироскопические силы на твёрдое тело не воздействуют (случай движения тела по инерции) [8].

Для определения условий неустойчивости данного движения построим известным образом функцию Четаева [9]. Тогда, согласно теореме Четаева о неустойчивости, заключаем, что невозмущённое движение тела неустойчиво, если совместно выполняются условия

$$I_1 > A_{31} - A_{23}, I_1 < A_{12} - A_{23} (28)$$

или условия

$$I_1 < A_{31} - A_{23}, I_1 > A_{12} - A_{23}.$$
 (29)

Условия (28), (29) эквивалентны следующим

$$I_1 > A_{24} - A_{14}, \qquad I_1 < A_{34} - A_{14}$$
 (30)

или, соответственно,

$$I_1 < A_{24} - A_{14}, \qquad I_1 > A_{34} - A_{14}.$$
 (31)

Таким образом, *достаточные условия устойчивости* стационарных движений тела группы 1 определяются неравенствами (24) или (25) и эквивалентными им условиями (26) или (27). Условия неустойчивости этих движений устанавливаются соотношениями (28), (29) или ограничениями (30), (31).

Рассмотрим достаточное условие устойчивости стационарных движений группы 2, происходящих при условии $\lambda^{23} \neq 0$,

когда значения всех остальных параметров $\lambda^{rs} = 0$. Аналогично предыдущему можно показать, что невозмущённое движение (11) устойчиво, если выполняются условия

$$I_2 > A_{12} - A_{23}, I_2 > A_{31} - A_{23} (32)$$

или

$$I_2 < A_{12} - A_{23}, \qquad I_2 < A_{31} - A_{23}.$$
 (33)

Условия (32), (33) эквивалентны следующим

$$I_2 > A_{34} - A_{14}, \qquad I_2 > A_{24} - A_{14}, \tag{34}$$

$$I_{2} < A_{34} - A_{14}, \qquad I_{2} < A_{24} - A_{14}.$$
 (35)

Согласно теореме Четаева о неустойчивости невозмущённое движение вида (11) неустойчиво, если совместно выполняются условия

$$I_2 < A_{12} - A_{23}, I_2 > A_{31} - A_{23}, (36)$$

или условия

$$I_2 > A_{12} - A_{23}, I_2 < A_{31} - A_{23}. (37)$$

Соотношения (36), (37) равносильны условиям

$$I_2 < A_{34} - A_{14}, I_2 > A_{24} - A_{14}, (38)$$

или условиям

$$I_2 > A_{34} - A_{14}, \qquad I_2 < A_{24} - A_{14}.$$
 (39)

Таким образом, достаточные условия устойчивости стационарных движений тела группы 2 определяются неравенствами (32), (33) или эквивалентными им условиями (34), (35). Условия неустойчивости этих движений устанавливаются соотношениями (36), (37) или ограничениями (38), (39).

5. Устойчивость стационарного винтового движения

Получим достаточное условие устойчивости равномерного винтового движения твёрдого тела, имеющего ось кинетической симметрии, вдоль этой оси. Данное движение определяется совместными условиями равномерного вращения и равномерного сдвига относительно одной из главных осей инерции тела.

Пусть e_4e_3 — ось кинетической симметрии твёрдого тела. Тогда $A_{14}=A_{24}=A$, $A_{31}=A_{23}=B$, $\lambda^{14}=\lambda^{23}=\lambda^{24}=\lambda^{31}=0$ и система уравнений движения (5) при всех значениях $m^{rs}=0$ имеет первый интеграл $\omega^{34}=\omega_0=const$. Это соотношение совместно с условием $v^{34}=v_0=const$ определяет винтовое движение тела, происходящее вдоль оси его кинетической симметрии.

В возмущённом движении положим

$$\begin{bmatrix} \omega^{14} & \omega^{24} & \omega^{34} \\ v^{14} & v^{24} & v^{34} \end{bmatrix} = \begin{bmatrix} \omega_1 & \omega_2 & \omega_0 \\ v_1 & v_2 & v_0 + v_3 \end{bmatrix}.$$

Система уравнений возмущённого движения, полученная в силу уравнений (5), имеет следующие первые интегралы

$$W_{1} = -A^{2} (\omega_{1}^{2} + \omega_{2}^{2}) + B^{2} (v_{1}^{2} + v_{2}^{2}) + (A_{12}v_{3})^{2} + 2A_{12} (A_{12}v_{0} + \lambda^{12})v_{3} = const,$$

$$W_2 = AB(\omega_1 v_1 + \omega_2 v_2) + A_{12}(A_{34}\omega_0 + \lambda^{34})v_3 = const, \quad (40)$$

$$W_3 = A(\omega_1^2 + \omega_2^2) + B(v_1^2 + v_2^2) + A_{12}v_3^2 + 2A_{12}v_0v_3 = const.$$

Построим функцию Ляпунова в виде связки интегралов (40) по Лагранжу

$$W = W_1 - 2\lambda_1 W_2 + \lambda_2 W_3 + W_3^2 = A(\lambda_2 - A)(\omega_1^2 + \omega_2^2) - 2\lambda_1 AB(\omega_1 v_1 + \omega_2 v_2) + B(\lambda_2 + B)(v_1^2 + v_2^2) + A_{12}(\lambda_2 + A_{12} + 4A_{12}v_0^2)v_3^2,$$

гле обозначено

$$\lambda_1 = (\lambda_2 \, \nu_0 + G_{12}) \, G_{34}^{-1} \,, \quad G_{12} = A_{12} \, \nu_0 + \lambda^{12} \,, \quad G_{34} = A_{34} \, \omega_0 + \lambda^{34} \,.$$

Согласно критерию Сильвестра

$$\lambda_2 > A, \qquad f(\lambda_2) < 0, \tag{41}$$

где обозначено

$$f(\lambda_2) = (ABv_0^2 - G_{34}^2)\lambda_2^2 + [(A - B)G_{34}^2 + ABG_{12}v_0]\lambda_2 + AB(G_{12}^2 + G_{34}^2).$$

Множитель Лагранжа — постоянная λ_2 , удовлетворяющая условиям (41), существует, если выполняется неравенство

$$(A+B)^{2}G_{34}^{2} + 4AB(G_{12} + Av_{0})(G_{12} - Bv_{0}) > 0$$
 (42)

при дополнительном условии $\omega_0 \neq -A_{34}^{-1} \lambda^{34}$.

Соотношение (42) выражает *достаточное условие устойчивости* стационарного винтового движения твёрдого тела в пространстве L_3 .

В случае, при котором система гироскопических сил на твёрдое тело не воздействует ($\lambda^{12}=\lambda^{34}=0$), соотношение (42) принимает вид

$$\left(\frac{\omega_0}{v_0}\right)^2 > \frac{4AB}{A_{34}^2} \cdot \frac{(A+A_{12})(B-A_{12})}{(A+B)^2},\tag{43}$$

а присоединённое к соотношению (43) условие $ABv_0^2 - G_{34}^2 < 0$

принимает форму
$$\left(\frac{\omega_0}{v_0}\right)^2 > \frac{AB}{A_{34}^2}$$
 (44)

Неравенство (44) совпадает с условием устойчивости равномерного винтового движения, приведённым в работе [8].

Заключение

В предыдущих разделах получены условия устойчивости и неустойчивости стационарных движений твёрдого тела: его равномерного вращения и равномерного сдвига относительно главной оси инерции, а также равномерного винтового движения. Все эти движения совершаются телом под воздействием системы гироскопических сил, активизированной в пространстве Лобачевского L_3 . Примерами-представителями гироскопических сил являются:

- сила Лоренца, действующая на электрический заряд, движущийся в стационарном однородном магнитном поле [10];
- сила, обусловленная действием эффекта С.Барнетта. Этот эффект вызывает усиление намагниченности телаферромагнетика, вращающегося вне магнитного поля, вдоль его оси вращения [11];
- моментно-силовой фактор, возникающий при вращении сверхпроводящего твёрдого тела, генерирующего магнитное поле

вследствие собственного вращения. Этот фактор является порождённым магнитным моментом Лондона (эффект Φ . и Γ . Лондонов) [12];

• моментно-силовое воздействие, возникающее в результате присоединения к телу динамически и статически уравновешенного кинетически симметричного ротора, вращающегося вокруг оси инерции с заданной постоянной относительной угловой скоростью [13].

Система гироскопических сил может быть задана некоторым *обобщённым потенциалом*, который выражается билинейной формой обобщённых координат и обобщённых (по Лагранжу) скоростей [14].

Поскольку при ограничениях $\omega_0 > 0$, $\lambda^{14} > 0$ и соотношениях (24), (25) (или (26), (27)) выполняются условия (15)–(17), то условия (24)–(27) являются не только достаточными, но и *необходимыми условиями устойчивости* стационарных движений группы 1.

Аналогичным образом, так как при ограничениях $v_0 > 0$, $\lambda^{23} > 0$ и соотношениях (32), (33) (или (34), (35)) выполняются условия (20), (21), то условия (32)–(35) являются не только достаточными, но и *необходимыми условиями устойчивости* стационарных движений группы 2.

Все стационарные движения тела из групп 1, 2 в некритических случаях не являются асимптотически устойчивыми.

Библиографический список

- 1. *Широков А.П.* Винтовая регулярная прецессия в пространстве Лобачевского // Учёные записки Казанского ун-та, 1963. Т. 123. Кн. 1. С. 196–207.
- 2. *Крюков М.С.* О движении стержня по инерции в пространстве Лобачевского // Известия вузов. Сер. Математика. 1964, № 4 (41). С. 86–98.
- 3. *Магнус К*. Гироскоп. Теория и применение. М.: Мир, 1974. 528 с.
- 4. Голубев Ю.Ф. Основы теоретической механики. М.: Изд-во Московского ун-та, 1992. 526 с.
- 5. Макеев Н.Н. Квазитвёрдое движение прототела в пространстве Лобачевского // Проблемы механики и управле-

- ния. Нелинейные динамические системы / Пермский ун-т. Пермь, 2007. С. 110–130.
- 6. Джури Э. Инноры и устойчивость динамических систем. М.: Наука, 1979. 300 с.
- 7. *Кузьмин П.А.* Малые колебания и устойчивость движения. М.: Наука, 1973. 207 с.
- 8. *Крюков М.С.* Некоторые вопросы устойчивости твёрдого тела по инерции в пространстве Лобачевского // Итоговая науч. конф. Казанск. ун-та за 1963 г. Секц.: математика, кибернетика, механика. Казань, 1964. С. 39–41.
- 9. *Четаев Н.Г.* Устойчивость движения. М.: Наука, 1965. C.33, 37.
- 10. *Тамм И.Е.* Основы теории электричества. М.: Наука, 1989. 504 с.
 - 11. Вонсовский С.В. Магнетизм. М.: Наука, 1971. 1032 с.
- 12. *Киттель Ч.* Введение в физику твёрдого тела. М.: Наука, 1978. 792 с.
- 13. *Румянцев В.В.* Две задачи о стабилизации движения // Механика твёрдого тела. 1975, № 5. С. 5-12.
- 14. Голдстейн Г. Классическая механика. М.: ГИТТЛ, 1957. 408 с.